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We demonstrate that the BCM learning rule follows directly from STDP
when pre- and postsynaptic neurons �re uncorrelated or weakly corre-
lated Poisson spike trains, and only nearest-neighbor spike interactions
are taken into account.

1 Introduction

Over the past several years, there has been increasing interest in a novel
form of Hebbian synaptic plasticity called spike-timing-dependent plasticity
(STDP; Markram, Lubke, Frotscher, & Sakmann, 1997; Bi & Poo, 1998; De-
banne, Gahwiler, & Thomson, 1998; Feldman, 2000; Sjostrom, Turrigiano, &
Nelson, 2001; Froemke & Dan, 2002), in which the temporal order of presy-
naptic and postsynaptic spikes determines whether a synapse is potentiated
or depressed (see Figure 1A). While experiments to date have given us a
fairly clear idea of how STDP affects synaptic weights when only isolated
pairs of presynaptic and postsynaptic spikes are present, it is not clear how
STDP should be applied to natural spike trains, which involve many spikes
and many possible pairings of spikes (Froemke & Dan, 2002). Speci�cally,
what is not clear is how plasticity at a given synapse builds up over time.
This problem is interesting for its own sake, and also because it promises to
shed light on the relationship between STDP and the best-studied forms of
Hebbian plasticity, long-term potentiation, and depression (LTP and LTD),
which explicitly make use of long spike trains (Bear & Malenka, 1994). Pre-
sumably all of these forms of plasticity arise from the same underlying
biophysical mechanisms, and it should be possible to consider them within
a single framework. Here we examine different implementations of STDP,
compare them with a standard LTP=LTD implementation called the BCM
(Bienenstock-Cooper-Munro) synapse (Bienenstock, Cooper, & Munro, 1982;
Bear, Cooper, & Ebner, 1987), and in so doing arrive at certain constraints
on how STDP should be implemented when considering natural spike
trains.

In the BCM formulation, one considers instantaneous �ring rates rather
than individual spikes. Synaptic input that drives postsynaptic �ring to
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Figure 1: The STDP curve. The parameters AC D 103%, ¿C D 0:014 sec,
A¡ D ¡51%, ¿¡ D 0:034 sec are taken from Froemke and Dan (2002). (B) Func-
tion controlling synaptic plasticity at the Cooper synapse receiving 20 Hz presy-
naptic stimulation. Data points (circles) are from visual cortex experiments by
Kirkwood et al. (1996). Parameters from Figure 1A in equation 3.1 result in the
normal curve. Increasing ¿C by 10% results in the “deprived” curve. (C) All-to-
all implementation of STDP: the net synaptic change is a combination of small
changes induced by all possible pre- and postsynaptic pairs. (D) The result of
application of STDP rule to Poisson spike trains: presynaptic: 10 Hz and 100,000
spikes; postsynaptic: x Hz and matching number of spikes. The analytical curves
are derived in supplemental materials. (E) The nearest-neighbor implementa-
tion of STDP. For each presynaptic spike, only one preceding and one succeeding
postsynaptic spike are considered. (F) The resulting BCM function. Parameters
are as in Figure 1A.
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high levels results in an increase in synaptic strength, whereas input that
produces only low levels of postsynaptic �ring results in a decrease (see Fig-
ure 1B). The threshold �ring rate, the crossover point between potentiation
and depression, is itself a slow function of postsynaptic activity, moving so
as to make potentiation more likely when average activity is low and less
likely when it is high. This sliding of the threshold serves to stabilize net-
work activity and promote competition between synapses (Bienenstock et
al., 1982). Considerable experimental evidence for this kind of plasticity has
been obtained in neocortex and hippocampus at some of the same synapses
at which evidence for STDP has also been obtained (Bi & Poo, 1998; Froemke
& Dan, 2002; Kirkwood, Dudek, Gold, Aizenman, & Bear, 1993). Even so, it
is not obvious how BCM plasticity and STDP are related or even if they are
compatible. Consider, as an illustration, the extreme case in which all spikes
of the postsynaptic neuron occur after those of the presynaptic one. This will
always result in potentiation by an STDP rule, but it could result in either
depression or potentiation by the BCM rule, depending on the exact value
of the postsynaptic �ring rate. To clarify this issue, we compare the two
kinds of plasticity more closely in a more biologically realistic regime—that
of uncorrelated or weakly correlated presynaptic and postsynaptic neurons
that �re in a nearly Poisson manner, as do cortical neurons in vivo.

2 Classical Implementations of STDP

The form of the STDP curve, with its well-matched potentiation and de-
pression portions, might cause one to guess that STDP applied to this kind
of natural spike train should lead to a BCM-like curve similar to the one in
Figure 1C. On the one hand, the peak of the potentiation half of the curve is
larger than the minimum of the depression half, which suggests that high
�ring rates (small interspike intervals) should result in a net potentiation.
On the other hand, the tail of the depression half is longer than the tail of
the potentiation one, which suggests that low �ring rates (large interspike
intervals) should result in a net depression. And at some intermediate �ring
rate, a crossover should occur. But in fact, as we demonstrate in Figure 1D,
this is not necessarily true.

A straightforward application of the STDP rule does not lead to poten-
tiation in any case, when one uses independent Poisson spike trains with
a mean postsynaptic �ring rate x. In the standard additive implementa-
tion of STDP (Song, Miller, & Abbott, 2000), for each presynaptic spike, one
takes into account all preceding and all succeeding postsynaptic spikes and
then sums the contributions of the various pairings. If postsynaptic �ring
is a random process that is relatively independent of presynaptic �ring,
then the postsynaptic �ring density is relatively �at, as in Figure 1C (no
peak). Consequently, all postsynaptic spikes that precede the presynaptic
one essentially sample the depression curve, and all postsynaptic spikes
that follow the presynaptic one sample the potentiation curve. (Mathemat-
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ical details of this procedure are given in the appendix.) The net effect is,
then, the difference between the area under the positive portion of the STDP
curve and the area under the negative portion, multiplied by the postsynap-
tic �ring rate x. As a function of x, this is merely a straight line, in which
potentiation never results, no matter how high the �ring rate.

One can relax the assumption of completely uncorrelated pre- and post-
synaptic spike trains and consider the case when postsynaptic �ring density
has a small peak right after the presynaptic �ring (function c.t/ in Figure 1C).
The magnitude of the peak a may be constant, or it may scale with the post-
synaptic �ring rate x. Both cases, considered in the appendix, result in a
linear synaptic change similar to that produced by additive STDP without
correlations. The case of constant a shifts the straight line up (see Figure 1D),
while the case of a proportional to x changes the slope of the line. In any
case, one does not see the transition from LTD to LTP, as is required by the
BCM rule.

Also inadequate from this standpoint is a modi�cation of the STDP rule
recently proposed by Froemke and Dan (2002), in which the ef�cacy of each
spike is suppressed by the preceding spikes of the same neuron, so that
activity-induced synaptic modi�cation depends not only on the relative
spike timing between neurons, but also on the spiking pattern within each
neuron. Speci�cally, these authors propose that associated with each presy-
naptic and postsynaptic neuron is an ef�cacy variable that drops to zero
following a spike and that relaxes exponentially back to one (its maximal
value) with a characteristic time ¿ pre and ¿ post on the order of tens of mil-
liseconds. However, this proposal for treating multiple interactions cannot
account for the potentiation of synapses at high �ring rates. As we show in
the appendix, the modi�cation is basically equivalent to the standard STDP
implementation, the only difference being that the presynaptic and postsy-
naptic spikes are now in chronic state of suppression. The precise numbers
are changed, but the qualitative picture is not.

In the appendix, we explicitly consider eight implementations of STDP.
In particular, we �nd that treating interactions between multiple pairs of
spikes multiplicatively (van Rossum, Bi, & Turrigiano, 2000) rather than
additively—that is, imagining that each pairing changes the conductance
by a percentage of its existing value rather than by a �xed amount—makes
no real difference. Additive and multiplicative models are in some cases
equivalent because the latter often reduces to the former when one considers
the logarithms of weights rather than the weights themselves.

3 Nearest-Neighbor Implementation of STDP

What does make a difference—what does make STDP compatiblewith BCM
(and with classical LTP/LTD more generally)—is restricting which pair-
ings contribute to plasticity (Sjostrom et al., 2001; van Rossum et al., 2000).
Rather than considering all presynaptic and postsynaptic pairings equally,
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there are good reasons to consider only nearest-neighbor pairs. One reason
is that postsynaptic spikes backpropagate into the dendritic tree and reset
the membrane voltage in dendritic spines. Consequently, the most recent
postsynaptic spike overrides the effect of all the earlier spikes, so that the
membrane voltage is really only a function of time since the latest postsy-
naptic spike. Similarly, the �rst succeeding postsynaptic spike may override
the effect of subsequent spikes due to calcium saturation or glutamate re-
ceptor desensitization. Making this assumption, one �nds that when the
postsynaptic spike train is a Poisson process with �ring rate x, the post-
synaptic probability density (the probability of observing a spike with a
certain delay t) becomes exponential in time, xe¡xt, as in Figure 1E (here we
consider uncorrelated trains again). High (low) �ring rates x result in pre-
dominantly small (large) intervals and hence in potentiation (depression).
The expected magnitude of synaptic modi�cation per one presynaptic spike
has the form

C.x/ D

average potentiation
z }| {Z 1

0
AC e¡t=¿C xe¡xt dt C

average depression
z }| {Z 0

¡1
A¡ et=¿¡ xext dt

D x

Á
AC

¿ ¡1
C C x

C A¡

¿ ¡1
¡ C x

!
(3.1)

depicted in Figure 1F. It coincides with the BCM synapse in the sense that
low activity results in depression and large activity results in potentiation.
Incidentally, the assumption of strictly nearest-neighbor pairs can be relaxed
and the result retained if one instead considers one preceding but all suc-
ceeding postsynaptic spikes (semi-nearest-neighbor implementation). This
also leads to the BCM synapse, as we show in the appendix.

Having an analytic expression for STDP’s effects at a given �ring rate
x (see equation 3.1) allows us to attempt to relate data obtained using
STDP and LTP=LTD experimental protocols more quantitatively. In par-
ticular, equation 3.1 indicates that the threshold between potentiation and
depression (the zero crossing of C.x/),

# D ¡ AC=¿¡ C A¡=¿C
AC C A¡

; (3.2)

has positive values when

AC > jA¡j (potentiation dominates depression for

short intervals);

jA¡j¿¡ > AC¿C (depression area is greater than potentiation area/:
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Using the STDP parameters obtained in layer 2=3 rat visual cortex (Froemke
& Dan, 2002), we calculate a threshold value of around 12 Hz, which is near
the value of 9 Hz found using LTP=LTD protocols in the same brain area
(Kirkwood, Rioult, & Bear, 1996). One key feature of the BCM learning rule
is that the threshold does not have a �xed value but slides between higher
and lower values as a slow function of postsynaptic activity (Bienenstock et
al., 1982). Equation 3.1 can be used to relate the sliding of the threshold to the
biophysical processes underlying plasticity. In particular, the potentiation
time constant ¿C most likely depends on the kinetics of NMDA receptors,
which in turn depend on their subunit composition. It has been shown
(Philpot, Sekhar, Shouval, & Bear, 2001) that low levels of postsynaptic ac-
tivity due to light deprivation increase the ratio of NR2B subunits to NR2A
subunits in NMDA receptors. This in turn increases the time constant of
NMDA receptors by up to 20%. As one can see from equation 3.2 and in
Figure 1B, increasing ¿C by as little as 10% results in sliding the calculated
threshold by a factor of two, which is in agreement with the experimental
data (Kirkwood et al., 1996).

Discussion

The question of how interactions between multiple spike pairs should be
treated given an STDP rule has been considered previously (Sjostrom et al.,
2001; Froemke & Dan, 2002; Song et al., 2000; van Rossum et al., 2000). In
theoretical articles, the choice between applying the rule to all spike pairings
or only to nearest-neighbor pairings has been made on a somewhat ad hoc
basis, without a real empirical or biological justi�cation. In experimental
articles in which the question has been considered, the answers given have
been limited in scope. Speci�cally, they have been limited to explaining
data generated by applying STDP experimental protocols. What they have
neglected is that a proper approach should take into account both STDP and
classical LTP=LTD. Here we have attempted to do so, and our study suggests
that the most widely used STDP implementations may not be adequate: the
pairings should be restricted to only proximal spike pairs. And we see that
a handful of reasonable assumptions generates a simple equation that can
link the parameters of STDP to the BCM formulation of LTP=LTD, resulting
in a more intuitive picture of how these forms of plasticity are related.

We have been considering two phenomenological models of plasticity,
STDP and BCM, and important questions remain about how these mod-
els relate to the actual biophysical processes underlying synaptic plastic-
ity. Although considerable data have been gathered about STDP applied
to a single pair of spikes, many other aspects of this rule have yet to be
worked out experimentally—for example, the issue of multiple spike pairs
that we address in this theoretical article, as well as whether changes in
synaptic ef�cacy depend on the size of the synapse. While the BCM formu-
lation of LTP=LTD has been in�uential, how well it describes the empirical
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data is open to question. Tests of the BCM idea have been largely indi-
rect and have not convincingly validated certain aspects of the theory, in
particular the idea that only postsynaptic activity determines the sign of
plasticity.

4 Conclusion

This article addresses an important theoretical issue: how STDP, a novel
form of Hebbian plasticity that has attracted much attention recently, relates
to classical long-term potentiation and depression, in the form of the Cooper
(or BCM) synapse. It is commonly (though not universally) believed that
these two formsofplasticity arise from the same underlying biophysical pro-
cess. The relationship between the two has been explored by, among others,
van Rossum et al. (2000), Senn, Markram, & Tsodyks (2001), Kempter, Ger-
stner, & van Hemmen (1999, 2001), Castellani, Quinlan, Cooper, & Shouval
(2001), and Abarbanel, Huerta, & Rabinovich (2002), though no attempts
have been to contrast different implementations of STDP with respect to
BCM.

Here we have determined conditionsunder whichone is equivalent to the
other, and by making a handful of biologically plausible assumptions, such
as Poissonian spiking, we have derived a simple equation that relates one
form of plasticity to the other (see equation 3.1 or Figure 1F). We believe that
this is an important step in reconciling STDP and classical LTP=LTD and will
be of use to a broad range of researchers, ranging from electrophysiologists
studying synaptic plasticity to computational neuroscientists interested in
understanding dynamics of networks.

Appendix: Different Implementations of STDP

If ¿ D t
post
j ¡ t

pre
i is the interval between the ith and the jth spikes of the

presynaptic and postsynaptic neurons, then the STDP synaptic modi�cation
is given by

wij D
(

ACe¡¿=¿C if ¿ > 0

A¡eC¿=¿¡ if ¿ < 0;

where AC D 103, A¡ D ¡51, ¿C D :014 sec, and ¿¡ D :034 sec are experi-
mentally determined STDP parameters for layer 2=3 visual cortical neurons
(Froemke & Dan, 2002). See Figure 1A.

Poisson spike trains with �ring rates of 10 Hz and x Hz were generated
for presynaptic and postsynaptic neurons, respectively. The postsynaptic
�ring rate x was varied systematically between 0 and 20 Hz, and the aver-
age synaptic modi�cation per presynaptic spike was calculated using eight
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STDP implementations, which are described below.

² Classical additive STDP adds the effect of all pairs,

w D
X

i;j

wij

and results in the straight line depicted in Figure 1d, which has a slope
equal to the difference between the depression and potentiation areas.
Indeed, for every presynaptic spike, all preceding postsynaptic spikes
sample the depression curve, and all succeeding postsynaptic spikes
sample the potentiation curve, so that the averaged net effect w is
the difference between the areas beneath the curves multiplied by the
postsynaptic �ring rate. More precisely,

C.x/ D

average potentiation
z }| {Z 1

0
AC e¡t=¿C x dt C

average depression
z }| {Z 0

¡1
A¡ et=¿¡ x dt

D x.AC¿C C A¡¿¡/:

² Classical multiplicative STDP,

.1 C 0:01w/ D
Y

i;j

.1 C 0:01wij/;

is equivalent to the additive model if one considers the logarithm

log.1 C 0:01w/ D
X

ij

log.1 C 0:01wij/:

This also results in a straight line with a slope equal to the difference
between the areas bounded by the curves,

Z 1

0
log.1 C 0:01A§e¡t=¿§ / dt:

See Figure 1D.

² Suppression additive STDP assigns a suppression weight to each spike
that depends on the time elapsed since the previous spike,

ei D 1 ¡ e.ti¡ti¡1/=¿ ;

where ¿ pre D 28 ms and ¿post D 88 ms, so that the net effect is

w D
X

i;j

e
pre
i e

post
j wij:

This is the model of Froemke and Dan (2002), and the parameters are
taken from that model. Because of the interactions between the spikes,
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all the spikes are in a chronic state of “suppression,” that is,

hei D 1 ¡
Z 1

0
e¡t=¿ xe¡xt dt D 1

1 C x¿
;

and the averaged synaptic modi�cation is the curve,

C.x/ D x.AC¿C C A¡¿¡/
1

1 C 10¿ pre
1

1 C x¿post ;

depicted in Figure 1D. It saturates at high �ring rates but never crosses
zero.

² Classical additive STDP (correlated spike trains). When the pre- and post-
synaptic neurons have correlated �rings, the postsynaptic �ring den-
sity can be represented in the form

p.t/ D x C ac.t/;

where c.t/ describes the shape of the peak of the cross-correlogram,
as in Figure 1C, and a is a scaling factor, which may depend on the
postsynaptic �ring rate x. The averaged synaptic modi�cation has the
form

C.x/ D

average potentiation
z }| {Z 1

0
AC e¡t=¿C .x C ac.t// dt C

average depression
z }| {Z 0

¡1
A¡ et=¿¡ .x C ac.t// dt

D x.AC¿C C A¡¿¡/ C ac0; (A.3)

where

c0 D
Z 1

0
AC e¡t=¿C c.t/ dt C

Z 0

¡1
A¡ et=¿¡ c.t/ dt

is a parameter that depends on the exact shape of the peak of the cross-
correlogram. If the magnitude of the peak is constant, then C.x/ has
the same straight-line form as in the uncorrelated case except that it
is translated by ac0, as in Figure 1D. If the magnitude of the peak is
proportional to the �ring rate, for example, a D x, then C.x/ is a straight
line with the slope AC¿C C A¡¿¡ C c0.

² Semi-nearest-neighbor additive STDP. For each presynaptic spike, we
consider only one preceding postsynaptic spike and ignore all earlier
spikes. The motivation for this is the idea that the preceding post-
synaptic spike overrides the effect of the earlier spikes due to sub-
linear summation of membrane voltage in dendritic spines. If there
is no saturation in CaCC or glutamate=NMDA receptor dynamics,
then all subsequent postsynaptic spikes must be considered. As a
result, the postsynaptic probability density is exponential before the
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presynaptic spike (as in Figure 1E) but �at after the presynaptic spike
(as in Figure 1C). The resulting net modi�cation per one presynaptic
spike is

C.x/ D

average potentiation
z }| {Z 1

0
AC e¡t=¿C x dt C

average depression
z }| {Z 0

¡1
A¡ et=¿¡ xext dt

D x

Á
AC¿C C A¡

¿ ¡1
¡ C x

!
;

which is similar to the curve depicted in Figure 1F.

² Nearest-neighbor additive STDP. For each presynaptic spike, only two
postsynaptic spikes are considered: the one that occurs before and the
one that occurs after the presynaptic �ring. The resulting averaged
curve,

C.x/ D

average potentiation
z }| {Z 1

0
AC e¡t=¿C xe¡xt dt C

average depression
z }| {Z 0

¡1
A¡ et=¿¡ xext dt

D x

Á
AC

¿ ¡1
C C x

C A¡

¿ ¡1
¡ C x

!

is depicted in Figure 1F.

² Nearest-spike additive STDP. For each pre-synaptic spike, one �nds the
nearest postsynaptic spike (model 2 in by Sjostrom et al., 2001), re-
gardless of whether it is before or after the presynaptic �ring. Since
the conditional postsynaptic probability density is xe§2xt, the resulting
averaged curve has the form

C.x/ D x

Á
AC

¿ ¡1
C C 2x

C A¡

¿ ¡1
¡ C 2x

!
:

² Nearest-spike additive STDP with LTP winning is similar to the one above
except that the LTD due to “post then pre” pairs is not counted if the
postsynaptic spike participated in LTP interaction. This corresponds
to the model 3 implementation of STDP rule by Sjostrom et al. (2001).
The conditional postsynaptic probability for LTP window is as above,
that is, xe¡2xt; t ¸ 0. The probability for the LTD window depends on
the pre- and postsynaptic �ring rate, and it can easily be determined
numerically. If both rates are the same, then it can be approximated by
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Figure 2: Stability diagram of two implementations of STDP rule.

2=3xe2xt; t < 0. The resulting averaged curve has the form

C.x/ D x

Á
AC

¿¡1
C C 2x

C
2=3A¡

¿ ¡1
¡ C 2x

!

:

A.1 Stability of Various Implementations of STDP. Using the relation-
ship between STDP and BCM rules, we can study some aspects of stability
of the former using the latter. Consider the BCM equation

Ps D C.xpost.t//xpre.t/;

where s is the synaptic weight and xpre and xpost are the pre- and postsy-
naptic �ring rates. The form of the function C.x/ provides invaluable infor-
mation about the stability of synaptic modi�cation even when there is no
modi�cation of the threshold. The additive, multiplicative, and suppression
implementations of STDP without correlations result in negative functions
C.x/ depicted in Figure 1D provided that AC¿C < jA¡¿¡j. In this case, the
synaptic weight s ! 0 for any nonzero pre- or postsynaptic �ring rate. This
result con�rms �ndings of Song et al. (2000) that uncorrelated �ring of a
postsynaptic neuron always results in synaptic depression provided that
the depression area of STDP curves is greater than the facilitation area.

When the postsynaptic �ring rate is small, the postsynaptic neuron starts
to exhibit correlations with presynaptic neurons (Song et al., 2000). There-
fore, to study the dynamics of s for small xpost,we need to consider correlated
probability density, such as the one in Figure 1C. The classical additive im-
plementation of STDP results in C.x/ having form A.3 depicted in Figure 1D
and Figure 2, left. It has a nonzero globally stable equilibrium.
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Similarly, the nearest-neighbor implementation of STDP with correla-
tions results in

C.x/ D x

Á
AC¿C C A¡

¿ ¡1
¡ C x

!
C ac0:

Here, the term ac0 is due to correlations, as in the case of classical additive
STDP considered above. The graph of this function is depicted in Figure 2,
right, and it has a stable and unstable equilibrium. Small postsynaptic �ring
rates result in s conversing to the stable equilibrium (the black circle in
the �gure), whereas large �ring rates result in a runaway dynamics of s—
s ! C1. The stable equilibrium corresponds to a balance of potentiation,
which is due to the correlations (coincidences) of pre- and postsynaptic
�ring, and depression, which occurs because the depression area of STDP
is greater than the facilitation area.

If the term ac0 increases, the stable equilibrium in Figure 2, left, persists.
In contrast, the stable and unstable equilibria in Figure 2, right, approach
and annihilate each other via saddle-node bifurcation. The dynamics of this
implementation of STDP becomes unstable: any �ring rate of a postsynaptic
neuron results in potentiation. Thus, the classical implementation of STDP
is unconditionally stable, whereas the nearest-neighbor implementation can
be stable or unstable depending on how strong the correlations are.

Finally, notice that we consider the issue of stability assuming that the
postsynaptic �ring rate does not depend on the strength of the synapse s.
The qualitative results persist when xpost is a monotone function of s (i.e.,
the stronger the synapse, the higher the postsynaptic rate). More research is
needed to determine the stability of various implementations of STDP when
xpost is a nonmonotone function of s (i.e., a very strong synaptic drive results
in decreased input resistance and=or inactivation of Na conductances and,
hence, a smaller �ring rate).
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